PANGU 盤古

A High Resolution Gamma-Ray Space Telescope

Meng Su
On behalf of the PANGU collaboration

Pappalardo/Einstein fellow MIT

GammaSIG Meeting at the 225th AAS meeting, Seattle
January 4th, 2015

The DAMPE Detector

W converter + thick calorimeter (total 32 X₀) + precise tracking + charge measurement ⇒ high energy γ-ray, electron and CR telescope

Gamma-400

"Russian Cosmic Activity in 2013–2020"

HERD Conceptual Design

Silicon-Tungsten Tracker + LYSO Calorimeter

Expected gamma-ray sky sensitivity of HERD

HERD 5σ continuum sensitivity for one year observation in comparison with all other missions with gamma-ray observation capability

HERD one-year 5σ line sensitivity in comparison with predictions of different dark matter models

Sub-GeV detection is NOT improved

- The science case for high resolution (≤ 1°) gamma-ray space telescope around 100 MeV is very compelling
 - But it has yet to be realized, best instrument up to now is FERMI

PSF 3°-8° @100 MeV after latest software (Pass 8) improvement

No planned missions to improve ~<GeV observations

Gamma-ray detection principle

- At ~100 MeV, pair production dominates
 - Very small cross section ⇒ need more material for good acceptance
 - Material is the limiting factor of angular resolution because of important multiple scattering at ~MeV

氏 占 盤

PANGU

盤古

The first living being and the creator of the Universe from chaos in Chinese mythology.

What does PANGU mean to me?

PAir productioN Gamma-ray Unit

PANoramic **G**amma-ray **U**nit

Polarized ANd Gamma-ray Universe

Overview

PANGU: PAir-production Gamma-ray Unit

- Sub-GeV γ-ray telescope with unprecedented angular resolution
 - Energy range of 10 MeV 1 GeV with ≤ 1° point spread function at 100 MeV
 - With polarization measurement capability
- Innovative payload concept for a small mission
 - Thin target material (SciFi or Si) with magnetic spectrometer
- Wide range of topics of galactic and extragalactic astronomy and fundamental physics
 - Complementary to the world-wide drive for a next generation Compton telescope (0.1-100 MeV)

An unique instrument to open up a frequency window that has never been explored with great precision

Detection principle:

How Fermi-LAT detects gamma-ray photons

Detection principle: How PANGU detects gamma-ray photons

Detection principle: How PANGU detects gamma-ray photons

Detection principle: How PANGU detects gamma-ray photons

Response to the ESA-CAS small mission call for proposal

Missions

Show All Missions

Cosmic Vision 2015-2025

Cosmic Vision

Candidate Missions

M-class Timeline

· L-class Timeline

The four themes

- Planets and Life
- The Solar System
- Fundamental Laws
- The Universe

PLANNING FOR A JOINT SCIENTIFIC SPACE MISSION

AN INITIATIVE OF THE EUROPEAN SPACE AGENCY AND THE CHINESE ACADEMY

OF SCIENCES

FIRST ANNOUNCEMENT

1st Workshop

Planning for a joint scientific space mission

Chinese Academy of Sciences (CAS) - European Space Agency (ESA)

Chengdu (China)

25-26 February 2014

http://sci.esa.int/esa-cas-workshop http://jm.nssc.ac.cn **≞**∗∎

Search here

4-Apr-2014 13:52 UT

Shortcut URL

http://sci.esa.int/jump.cf m?oid=53072

Related Articles

- First Announcement
- Boundary conditions for the candidate missions
- Practical information
- Programme
- List of posters

The PANGU Collaboration

- A growing international collaboration from China, Europe and US
 - 64 members from 21 Chinese institutes
 - 20 members from 11 European institutes (Switzerland, Italy, Germany, France, Netherlands)
 - 4 members from 4 US institutes

Strong interest and broad support from the Chinese and European astrophysics communities

Conference presentations of PANGU: strong interest from community

- 10th INTEGRAL Workshop
- SPIE Astronomical Telescopes + Instrumentation 2014
- International Conference on Particle Physics and Cosmology (COSMO-14)
- Debates on the Nature of Dark Matter (Sackler meeting 2014)
- High Energy Astrophysics Division 2014 Meeting
- Identification of Dark Matter and TeV Particle and Astrophysics
- Cosmic Frontier 2014 (Beijing)
- Zeldovich-100 International Conference
- 224th American Astronomy Society Meeting
- APS Physics April Meeting 2014
- 2014 IEEE Nuclear Science Symposium (November)

Possible Detector Concepts

- To achieve ≤1° angular resolution passive material should be minimized and active detector should be thin or low density
 - To increase effective area (mass!) needs many layers or large volume
- Concepts for high resolution gamma pair telescope studied before
 - Low density gas TPC: HARPO, AdEPT (5-200 MeV), ...
 - Potentially very good resolution
 - Need large pressure vessels (AdEPT: 6×1m³ vessels for 20 kg gas)
 - All-silicon, many optimized as Compton telescope (with calorimeter):
 - MEGA/GRM: Double-sided SSD, distance 5 mm, 500 μm thick
 - CAPSiTT: Double-sided SSD, distance 1 cm, 2 mm thick
 - TIGRE: Double-sided SSD, distance 1.52 cm, 300 μm thick
 - Gamma-Light: single-sided, distance 1 cm, 400 μm thick
 - Scintillating fiber
 - Previous concepts with converter: SIFTER, FiberGLAST
 - PANGU: a new all-fiber or all-Si tracker light weight concept

Sketch of a Possible PANGU Layout

- 3 sub-systems: target-tracker, magnet + lower tracker, Anticoincidence
 - Target-tracker: ~ 70 x 70 x 30 cm³
 - Magnet: B=0.1 T, h = 10 cm, field in +y direction
 - Halbach array with 1.5 T NdFeB magnet, $r_2(r_1) = 27 (25)$ cm, 21 kg
 - Lower tracker: one X-layer above, one X-layer, and two X-Y layers below, ~10 cm between
 - Anticoincidence detector (ACD) on 5 sides

Compton vs Pair Telescope

- Below 10 MeV, Compton scattering dominates
 - Detection rely on multiple Compton scattering -> need calorimeter

- PANGU: dedicated pair telescope with thin tracking layers and no converter
 - Push the "thinness" to the limit for best PSF!
 - Silicon SSD of 150 μ m, or ribbon of 3-4 layers of ϕ =250 μ m fiber

The Target-Tracker

- Possible layout
 - x-y double layers with 6mm inter-distance, 50 double layers
- Tracking layer with ~0.3% X₀ total (requirement)
 - Silicon: 2 single sided SSD of 150 μm each
 - SciFi: 2 layers of ~0.65 mm each (Polystyrene equivalent), each layer formed by a stack of 3 layers of ø=250 μm fibers, readout by SiPM
- Total tracker active material
 - Silicon: ~17kg (silicon density ~2.33 g/cm³)
 - Fiber: ~25kg (polystyrene density ~0.9 g/cm³)
- Both need support substrate
 - Probably more for Si: biasing, bonding, more fragile
- Baseline: ~50kg for fiber/silicon, support structure, FE electronics
 - Plus: 30 kg for magnet, 20 kg for the rest (ACD, DAQ, ...)
 - ⇒ total weight ~100 kg
- Can be re-optimized to 60kg with reduced acceptance if limit is strict!

PANGU-Si vs PANGU-Fi

- Silicon and fibers trackers are both viable technologies
 - Challenges are mainly engineering: optimal use of the limited weight (ultra-light module) and power budgets (low power ASICs)
- Silicon has been successfully used in similar space missions
 - Fermi, AGILE, Pamela, AMS-02, ...
 - Fiber is cheaper, less fragile, more flexible geometry, but the technologies
- of scintillating photon detector (SiPM) and readout ASICs are newer
 - Recent developments in high energy physics, eg. LHCb, Mu3e, ...
 - Also in space: balloon prototype PERDaix of PEBS
 - Position resolution ~70 μm can be achieved

Mu3e module

Power Consumption

- Total number of readout channels of 50 double-layers in the target + 6
 layers in the lower tracker, with 250 μm readout pitch, is ~300k channels
 - Si strip detector pitch ~250 μ m, fibers can be readout by SiPM of 250 μ m pitch
- Current Si readout ASIC consumes ~0.2mW/channel
 - Push for ~0.1mW/channel with some R&D
 - Similar for readout ASIC for SiPM
 - Total ASIC power ~30-60 W
- Total power consumption of payload 60-90 W
 - Including CPU for online selection

Satellite Platform and Mission Concept

- Satellite platform
 - Temperature stability
 - Low temperature preferred for magnet and SiPM
 - Magnetic shielding
 - For satellite navigation system, not for payload
 - Pointing stability and precision
 - ~0.1° is sufficient
- Mission concept
 - Low earth orbit
 - All-sky survey and pointed observations
 - With possibility to rotate the payload to study systematic effect of polarisation measurement
 - GRB fast alert downlink
 - Minimum lifetime three years
 - Science data open to the world community

Potential Collaboration Projects

- Many interesting and challenging topics for collaboration
 - Science study: Science potential of a high resolution detector
 - Conceptual Design: Payload performance and optimization
 - Permanent magnet: light weight, uniformity
 - SciFi tracking layer: automatic winding process, placement precision, gluing process, light weight support, ...
 - Target-tracker: integration of layers on precise light weigh frame
 - Photon detector
 - SiPM: high efficiency, low dark current, high density
 - Other photon detection scheme?
 - FE ASIC: low power, trigger, timing
 - Trigger, Readout and DAQ: low power consumption, low dead time, robust trigger algorithm, flexibility for different observation mode
 - ACD: low weight, coverage, segmentation
 - On-ground data processing, science preparation: Science data center

Photon Angle Measurement

• For normal incidence ($cos(\theta)>0.975$), both tracks in the lower tracker

Measured photon direction = sum of two measured directions at the first measurement point weighted by measured momenta

Angular resolution of pair telescopes

E, (MeV)

PSF Comparison with Fermi Pass 8

Acceptance

Acceptance Compared to Fermi Pass 8

Angular Relative Acceptance

Large FOV for both tracks in target (limited energy measurement)

How about the energy measurement?

- Standard way is to use a calorimeter under the tracker
 - Eg. AGILE mini-calorimeter, Csl, 1.5X₀, 37.5x37.5x3 cm³, ~30 kg total,
 ~20kg active
 - Limited energy resolution ~70% at 100 MeV because of leakage
 - For PANGU (50x50x3 cm³) would need ~53 kg for calorimeter
 - Eg. GAMMA-LIGHT calorimeter (50x50x4.5 cm³) \Rightarrow ~80 kg total
 - Calorimeter not optimal if payload < 100 kg
- The PANGU approach: magnetic spectrometer with permanent magnet
 - Magnet below the tracker-target (light-weight configuration)
 - Magnet can be independently optimized
 - But limited FOV
 - Complication
 - Need to minimize stray field and shield sensitive satellite equipment

• For normal incidence ($cos(\theta)>0.975$), both tracks in the lower tracker

Raw width ~20-30% for 100MeV – 1GeV, bias should be corrected

PANGU v.s. Fermi

\$~1 billion, 4,300 kg

30 MeV	300 MeV	3 GeV	30 GeV	300 GeV
30 MeV	300 MeV	3 GeV	30 GeV	300 GeV
氏 占 盤				

~\$100 million, ~300 kg (<100 kg payload)

Energy Resolution

Raw width ~20-30% for 10MeV – 1GeV, bias should be corrected, e.g.. with energy measured in tracker

 $\Delta E/E$

Scientific Objectives: highlights

- Precise mapping of the gamma-ray sky at sub-GeV with high angular resolution
- Origin and acceleration of high energy cosmic rays
- Indirect dark matter search
- First detection of sub-GeV polarization
- Full-sky monitoring of a variety of soft gamma-ray transients (GRB/AGN/Solar flare/Terrestrial)
- Synergic multi-wavelength campaign
- Lorentz invariance/Baryon asymmetry in early universe

The sub-GeV sky is rich!

Conclusions

- PANGU is an unique and timely opportunity for high energy astrophysics. It will resolve and monitoring the sub-GeV sky with unprecedented spatial resolution, separating diffuse gamma-ray emission from point sources
 - PANGU science is not "incremental science", it will lead to fundamental discoveries and understanding.
- PANGU is synergic with DAMPE, HERD, CTA, Gamma-400 and other ground-based and space detectors (e.g., radio, optical, X-ray, TeV, gravitational wave experiments)
- Payload concept is innovative but the technology is ready
 - TRL6-7 for silicon tracker
 - TRL5 for scintillating fiber tracker

The idea is easy to scale up!

 Someday, 60 kg -> few tons, returns you a factor of ~100 better than Fermi at sub-GeV! Pushing the limit of GeV astronomy

That's exciting!

Thank You!

Welcome to join!

PANGU: All-sky explorer for the 10 MeV - 1 GeV Universe

A variety of sources, big discovery space!

PANGU is going to extend the spectrum of these sources to 10 MeV, and find new soft spectrum gamma-ray sources!

What has Fermi found: The LAT two-year catalog No association Possible association with SNR or PWN × AGN ☆ Pulsar △ Globular cluster Starburst Gal PWN Galaxv SNR Nova

The Second Fermi LAT Catalog

Globular clusters, high-mass binaries. normal galaxies Blazars 57%

~1/3 are "unassociated" sources with unknown nature!

Nolan et al. (2012), ApJ, 199, 31

Supernovae Remnants and Particle Acceleration

Science's Top 10 Breakthroughs of 2013!

PANGU will distinguish two scenarios without ambiguity

PANGU will detect more supernova remnants with ~5 times better PSF!

Fermi Bubbles --- Hadronic v.s. Leptonic

2014 Rossi Prize!

- Gigantic pair of bubbles in gamma-ray
 - Unexpected discovery, measurement at
 GeV is systematics dominated
 - 100 MeV to GeV range is crucial to distinguish leptonic origin of the gamma rays from hadronic origin

Measurement of < GeV cutoff is the key to infer the cosmic ray electron/ proton spectrum at low energy

Origin of cosmic ray
Cutoff within the Fermi
bubbles is unclear.

Gamma-ray Emission from Solar Flares

Bright solar flares have been detected by Fermi

LAT 1 day all sky data >100 MeV

Bad PSF, cannot resolve the Sun

no information on particle acceleration cite

- 1000 time the flux of the steady Sun
- 100 times the flux of Vela
- 50 times the Crab flare
- High energy emission (>100 MeV, up to 4 GeV) lasts for ~20 hours
- Softening of the spectrum with time

PANGU can resolve the flare in γ-ray!

Blazars and Origin of the UHECRs

Standard hypothesis: shocks in

Neutron stars

Sunspots

Interplanetary

10⁶

10-6

1 km

hadronic jets of Active Galactic Nuclei

Active galactic nuclei?

Galactic hald

Radio galaxy

- Jet spectra can be reproduced by leptonic or hadronic models
 - Only hadronic models predict neutrinos and high polarization in sub GeV range.

PANGU observations of blazars flares

Are we seeing dark matter in gamma-ray from the Galactic center?

SNRs, and diffuse emission

Daylan et al. (2014)

20

-10

20

Pulsars: Ideal Targets for PANGU

Millisecond pulsars (MSP) peaked at ~GeV → Unique for PANGU!

~5 better PSF → ~30 lower background to search pulsations

Example of MSP energy spectrum

Fermi γ -ray pulsar distribution: contamination from disk is important (small PSF required!)

Gamma-ray observations can help to disentangle the geometry of pulsar magnetospheres and emission regions

PANGU is a GRB monitor

Fermi -> PANGU (2021) Swift -> SVOM (2021) PANGU: lower energy, better localization, larger field of view! (> tens of GRBs per year)

Why monitoring the sky with big FoV?

Fermi-LAT already found >200 flaring sources on weekly timescales.

Variable source populations:

- Characterize AGN populations properties
- New Galactic gamma-ray transient population: Novae
- Other Galactic sources expected with known binaries and AGN density.

Earth Studies Objectives of PANGU: Terrestrial Gamma-ray Flashes

- TGFs are Intense (sub-)millisecond flashes of MeV gamma rays from thunderstorms
- Power in MeV flash comparable to power in lightning bolt
- Thunderstorms are most powerful natural terrestrial particle accelerator
- Accelerator at ~10-15 km altitude, accessible by aircraft

PANGU will measure the >10 MeV spectrum with higher resolution imaging (better rejection of earth limb background).

We plan to host a TGF archive which enables correlating high-energy TGFs with local and global meteorological data, unique data to atmospheric chemistry, local climate, and climate change Issues.

PANGU Magnetic Spectrometer

- Momentum measurement through bending angle
 - θ = 0.3 LB/p [mm T MeV⁻¹] = 3/p radian (p in MeV)
 - 3 mrad (0.17°) for 1 GeV, 30 mrad (1.7°) for 100 MeV
 - Δp/p = p/(0.3 LB) Δθ = (p/3) Δθ (p in MeV)
 - $\Delta\theta$ dominated by tracking resolution (σ_x/d) at high energy, and by multiple scattering at low energy

For p = 100-1000 MeV Δ p/p ~30%-50% reachable with B=0.1 T, L = 10 cm, σ_{x} =70 μ m, d = 10 cm

Permanent Magnet

- Halbach array with NdFeB magnet
 - $B = B_0 V_f \ln(r_2/r_1)$
 - B₀ is the remnant field, assume 1.5 T (strongest available today)
 - V_f is the the filling factor, assume 0.9 0.95
 - r₁ is the inner radius, assume 25 cm
 - For B = 0.1 T, $r_2 = r_1 \exp(0.1/(1.5*0.9)) = 26.9 \text{ cm}$
 - Magnet height 10 cm
 - For B = 0.1 T, magnet volume = $10x(26.9^2-25^2)\pi = 3098$ cm³
 - Density of magnet = 7.5 g/cm³
 - Weight of magnet = 3098 x 0.0075 x 0.9 = 21 kg
 - It is possible to have 0.1 T with <30kg
- A square magnet (50 cm x 50 cm) would be heavier and less uniform
- Best to operate on low temperature, also fro SiPM

Polarisation Measurement

$$d\sigma/d\phi = 2\pi \sigma_0 \left(1 + P_{\gamma} \cdot A \cdot \cos(2\phi - 2\phi_{pol})\right)$$

- Azimuthal angle distribution in the plane perpendicular to the γ direction
 - P_{y} : degree of polarisation; ϕ_{pol} : polarisation direction
 - A: Analyzing power, ~0.2 for pair production but kinematic dependent

- Keys to the measurement
 - Azimuthal angular resolution
 - transverse track length and multiple scattering
 - Intrinsic modulation of the detector!

Detector Intrinsic Modulation

• Detector intrinsic modulation because of bad ϕ resolution when particle goes in parallel to the strip direction

Intrinsic modulation energy dependent!

More important for higher energy because of smaller opening angle ⇒ shorter transverse track length

Intrinsic Modulation, Leading Track

- Electron cannot be identified If no tracks reached spectrometer
 - Use leading track

Variable and selection for optimal P,A should be further studied

Input Modulation, Electron

- Important to model intrinsic modulation!
- Need reliable simulation code for polarised pair production

Input Modulation, Leading Track

- Important to model intrinsic modulation!
- Need reliable simulation code for polarised pair production

Angular resolution at ~100 MeV

Angular resolution contributions

NIMA 701, 225-230

- Nuclear recoil introduce ~0.3° on angular resolution @100 MeV
- Reconstruction of the pair (energy measurement)
 - Best if energy of both tracks can be measure
 - If not normally use the direction of the leading (longest and straightest) track
 - Extra error θ_{68} of ~0.65° @ 100 MeV
- Track angular resolution
 - Multiple scattering: For $\theta_{MS} = 0.35^{\circ}$ @100 MeV, total material between 2 measurements should be less than 0.33% X_0 !
 - 310μm Si, 1.3mm fiber(polystyrene), 5.1cm Xe gas
 - Tracker nominal resolution: $\sqrt{2}\sigma_x/d = 0.9^\circ$ for $\sigma_x = 70 \mu m$, d=6mm
 - = Final resolution can approach 1.15× θ_{MS} when using many (~6) measurement points

nucleus/e-